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Unfolding

Use unfolding to recover theoretical distribution where

When?

There is no a-priori parameterisation (otherwise can just fit to function!)
This is needed for the result and not just comparison with MC
There is significant bin-to-bin migration of event

Where?
Traditionally used to extract structure functions
Dalitz plots: cross-feed between bins due to misreconstruction
“True” decay momentum distributions

Theory at parton level, we measure hadrons
Correct for hadronisation as well as detector effects

How?
Can sometimes get away with simple iterative procedure
If low statistics in bins, "spiky", need to smooth "regularization"
Packages out there, e.g., RooUnfold, works in root.

Also see: A SURVEY OF UNFOLDING METHODS FOR PARTICLE PHYSICS 
G. Cowan, http://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.ps 



Outline

Measuring particle properties: e.g., 
Different ways to extract
   from observables
Blind analyses

Top quark mass

e.g., GMSB SUSY

W mass

Searches for new particles/phenomena
Event selection
Multivariate Techniques
Backgrounds
Limits



Top Quarks ...back to measuring top mass...

Require 
    isolated lepton + missing E  + jets

Four quarks in the t t  partonic final state 
Require 4 jets?
No! Number partons ¹  Number jets!

–

T

T

T

Needs excellent understanding of
  entire detector!  Triggering, tracking,
   b-tags, electrons, muons, jets, E 

Real!

Performance must be understood
   and modelled well

Dominant background will be W + jets
                        (including W + 2 b-jets!)

More jets from
gluon radiation from initial or final state

Fewer jets from
overlaps (merged in reconstruction)
inefficiencies or cracks in detector
fall outside h acceptance or below p  cut
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Top Quarks

Since typical b-tagging efficiency ~50%, then for final state with two b jets,
First, b-tag:

Prob(2 tags) ~ 25%
Prob(³ 1 tag) ~ 75%

Control region 
(particularly for lower N   )
Verify background modeling

Signal region

jet
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Top Quarks

Understanding of backgrounds & assigning uncertainty

Background determined in control regions, extrapolated to signal region
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Top Quarks Matrix Element Method for Mass

Construct probability density function as function of m    for each event

x x x =

Calculating the probability for an event to be consistent with a tt decay 
   for a given m

Multiply probabilities for all the events for overal likelihood:

Event 1 Event 2 Event n...

4-vectors with maximal topological information + correlations, 
  maximal possible use of event info

Parton PDF's

Transfer
functionParton kinematics of event

Matrix Element
(lepton + jets)

Weight that 
jet is a b-jet

Observed kinematics
(e.g., parton,lepton,
neutrino 4-vectors)

of event

top

top
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Top Quarks Matrix Element Method for Mass

Construct probability density function as function of m    for each event

Bonus!  Knowledge of jet energy scale usually 
  a dominantsystematic uncertainty – let float 
   under constraint:

Constrain
to MW

Jet energy scale

"in situ"

  Better precision
   than external!

Parton PDF's

Transfer
functionParton kinematics of event

Matrix Element
(lepton + jets)

Weight that 
jet is a b-jet

Observed kinematics
(e.g., parton,lepton,
neutrino 4-vectors)

of event

top
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Top Quarks Calibration/Check of analysis

The other essential role of MC 
   when measuring a property:
   vary true value in MC, fit as if data: 

...and is fitted value and
its uncertainty consistent with
expectations?  Ensembles of 
MC events, statistics same as data
  ("luckiness")

-172.5 (GeV)topTrue M
-10 -8 -6 -4 -2 0 2 4 6 8 10

-1
72

.5
 (G

eV
)

to
p

Fi
tte

d 
M

-10

-8

-6

-4

-2

0

2

4

6

8

10
 / ndf 2c  4.61 / 3

p0        0.12± 0.62 
p1        0.02± 0.89 

 / ndf 2c  4.61 / 3
p0        0.12± 0.62 
p1        0.02± 0.89 

JES=1.00

lepton+jets
with JES prior

-1DØ Run IIb Preliminary, L=2.6 fb 

)sf(s
0 0.2 0.4 0.6 0.8 1 1.2 1.40

20

40
60

80
100
120

140
160

180
200

220
240

) = 0.392sf(sMean 

Observed in data

DØ Preliminary
Simulation



Top Quarks Template Method

Constrain
to MW

Real!
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Top Quarks Template Method

Probability density functions for                     for each point in 
a                        grid using Kernel Density Estimate (KDE) approach 
              a non-parametric method for forming density estimates that can 
                   easily be generalized to more than one dimension

Minimize likelihood of whole sample:

Individual top quark mass measurements
                         have a precision just under 1% Hard!

Measurements with precision less than 0.1%?

,

Hardcore!
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W Mass

A simple topology, but want
  crazy-good precision

Electron energy resolution (h=0)
                            at 50 GeV

Use variables only in transverse
  plane

Less sensitive to knowledge of 
(zero at LO; non-zero at ³  NLO)

,

Use knowledge of hadronic recoil
  through those unassociated 
   clusters to make and

less sensitive to the transverse
motion of the W boson

Underlying 
    event

Electron

Hadronic
   Recoil

Unassociated
    clusters

,



W Mass

To get required precision, need many samples with statistics of ~10

Few mm gaps between modulescf.

Precludes full MC, plus doesn't get the details right at this level of precision.

8

Tune parametric ("fast") simulation using both full simulation
   and data; ultimately data control events 

Electromagnetic response and
   resolution in MC tuned using this sample
(~400 templates, 50M events each)

Only one of huge number of control plots
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W Mass

Fit data to simulated distributions (templates in steps of M(W) = 10 MeV)
to determine mass

Tested all methods with full
MC simulation treated as data

For data, blinded W mass 
value until control plots okay

Also fit to 
and combine (not fully correlated!)

The correlation coefficients are 
determined using ensembles of 
simulated events (other important
   use of MC).
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W Mass

Most experimental systematic uncertainties limited by 
statistics; i.e., will improve with more data! (the importance of scales!)

0.05% total precision:
demonstrates what can
be done working very
hard with fundamentally
straight-forward
techniques ("fast" MC,
                       templates)

(analysts should all receive
   "sub per mille medals")

TABLE II: Systematic uncertainties of the MW measurement.

� MW (MeV)
Source mT pe

T /ET

Electron energy calibration 34 34 34
Electron resolution model 2 2 3
Electron shower modeling 4 6 7
Electron energy loss model 4 4 4
Hadronic recoil model 6 12 20
Electron e� ciencies 5 6 5
Backgrounds 2 5 4
Experimental Subtotal 35 37 41
PDF 10 11 11
QED 7 7 9
Boson pT 2 5 2
Production Subtotal 12 14 14
Total 37 40 43



Sobering... Particle physics' dirty little secret(s)

!!
!!!

!!

!

!

Possible that the experimenters during a period paid too much attention to the level of agreement
between their new result and the measurements of the recent past. If one judges whether a result is ready

for publication by its agreement with the current world average, such disasters can happen!

Courtesy PDG



...to be fair

!!
!!



Biases

Unbiased if the expectation value of the estimator 
                                                   is equal to the true value:

If we have mere statistical bias, this is usually not a problem and can be corrected!!
Experimenter bias occurs when human behaviour enters the equation.

If the bias vanishes for large     , then the estimator is asymptotically unbiased

Biased, doesn't matter how much statistics
bias



Biases Typical Sources

If you are not tuning on the data, why do you need to see the data, 
and what aspects do you need to see?

Tuning on the data (a cardinal sin, particularly low stats)

Stopping when the data “looks right”
A priori there is no inherent termination point of an analysis …
  try to set milestones before starting (easier said than done)

e.g., making cut value choices within a reasonable range (e.g., plateau 
  of sensitivity) but with a knowledge of the data

A signal inside of 2500 events. Make 10 cuts, each 90% efficient, 
  but 1% bias in each (i.e., upward fluctuation). Results in a 3s effect
  in the resulting signal



Biases Typical Sources

Looking for bugs when a result does not conform to expectation 
  (and not looking when it does)
Looking for additional sources of systematic uncertainty when a 
   result does not conform
Deciding whether to publish, or to wait for more data

Choosing to drop "outliers" or “strange” events 

The data selection criteria are unconsciously adjusted to bring the answer 
   closer to a theoretical value or a previously measured value.
Comprehensive checks are performed if the answer disagrees with expectation, 
   otherwise not so comprehensive. The extra checks might be invented by the 
   analysts, or requested by convenors, editorial/review boardss, etc. 
   (The experimenters feel more confident when the answer comes out “right”. 
   These checks may lead to “corrections” that change the answer)

Several competing analyses are performed using the same data. The 
   responsibles charged with making the decision chooses which is worthy of 
   publication after learning the answers, unconsciously favouring analyses that 
  “come out right”.



Biases

In each case, the experimenter bias is unintentional – the experimenters 
normally know that these practices are objectionable, 

 but in each example, the course of the analysis is unconsciously 
influenced by their knowledge of how the outcome is affected



Blind Analysis Know pitfalls and do best to avoid, or...

Hide the number of events (or don't look) in the signal region 
   (i.e., the box) until the cuts have been finalized, the acceptance has 
   been determined (with possible backgrounds estimated). 
   At the final stage, the box is opened, and the answer 
   (cross section measurement or limit) is computed.

Estimate background in blinded
region by extrapolating from
sidebands (for a certain neural
 net output bin)

A priori decide on criteria/tests:

"Box closed"
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Blind Analysis Know pitfalls and do best to avoid, or...

Estimate background in blinded
region by extrapolating from
sidebands (for a certain neural
 net output bin)

Again, be "trigger aware", e.g., this one focusing on dimuon triggers significantly
         biased or "sculpted" the muon p   spectrum, needing correctionT

A priori decide on criteria/tests:

"Box closed"
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Blind Analysis Know pitfalls and do best to avoid, or...

Shifting the answer
In some cases, it may be sufficient to shift the answer by adding a random 
(but fixed and unknown) offset D to the answer. 

An advantage of this approach is that it allows two independent groups 
to analyze the same real data and compare their answers—both having the
 same random offset

("Opening box" = revealing/removing shift)

(Similar for BaBar for sin2b)

e.g., KTeV: 

e.g., : oscillations. Randomize sign of 
  flavor tag (       or        ?). Should result in 
   a null result (or apply to another system
   that should give a null result...)

, 

Shift constant C unknown,
  also +1 or –1 unknown
(prevented KTeV from
knowing which direction 
the result moved as 
changes were made)

 [exciting...]



Blind Analysis

Hiding (some) of the data!
Might randomly split all data event-by-event into two sets: A and B. 
The analysis procedure is developed using set A – set B is not looked at all. 
Once the analysis algorithm is finalised, if, say, systematics limited, 
set A is discarded, and the analysis is run on set B, which determines the final 
answer  (or used as an important control/confirmation check).
  (not always free of biases, e.g., calibration in A being used in B)

The fundamental strategy is to avoid knowing the 
answer until the analysis procedure has been set. Since checks

may lead to a change (or correction) of the procedure, they should
be completed, or at least scheduled, before the answer is revealed.

Method seems suited to a case where many cut variations are tried on data 
in order to search for unanticipated signals (bump hunting being a prime 
example), but the analysis procedure is otherwise fixed.
Since it is easy to be fooled by the statistical fluctuations that mimic new 
effects – if enough cut variations are investigated. In such cases, it is
helpful to have the unexplored set B to confirm or refute any “discovery” in
set A (or simply take more data...)



Searches

Cross section in cm   
  (or mb, nb, pb)

Efficiency/acceptance
(maximize)

Integrated Luminosity in cm
  (or mb , nb , pb  )

(maximize,
unless systematically limited)

Number of background candidates
(measured from data

or calculated from theory)
(minimize)

Number of observed candidates
(fitted or counted)

2

–1

–1 –1 –1

(see stat. tools, Barlow's talk)
First looking for a significant excess above background

Minimize background and/or know them very well
Efficiency: retain as much of the new particle signal as possible;
   more important is signal/background separation.

As long as reasonably high, value itself is not 
  important/needed until setting the limit, and then we are back to:



Event Selection "Separating with variables"
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https://tmva.sourceforge.net/



Multivariate Techniques

Likelihood Discriminants

Artificial Neural Networks

Not best that one can do if there are non-linear correlations

Develops ("learns") non-linear selection 
criteria on combinations of variables

Discriminate between S & B when you 
have many, correlated variables, none of
which individually give clear separation

Trained with samples of "signal" and 
"background"

Samples repeatedly presented to network
Outcome compared with desired
Link strengths adjusted

Best you can do if no correlations

e.g., histo 
of variable
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Multivariate Techniques

Likelihood Discriminants

Artificial Neural Networks

Single top outstanding
test bed for preparing
for searches: small signal
requiring advanced techniques
in presence of large backrounds

Not best that one can do if there are non-linear correlations

Best you can do if no correlations

e.g., histo 
of variable
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Multivariate Techniques

Decision Trees

Many more...

Optimally split data recursively until 
  at each node until a stopping
   criterion is reached 
   (e.g., purity or too few events)

All events end up in either a
  "signal" or a "background" leaf

"Boosted" or "bagged" decision trees

S/B
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S/B
4/29
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PF
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Multivariate Techniques

TMVA: The toolkit for multivariate data analysis, (Preprint arXiv:physics/0703039)
https://tmva.sourceforge.net/
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Multivariate Techniques

Weak variables refers to variables with no or only a small discrimination power.
Curse of dimensionality refers to the “burden” of required increase in training 
    statistics and processing time when adding more input variables.
Transparency: how much of black box?

If the method can be used for regression analysis, the number of targets is given
   which can be trained simultanously in one analysis, e.g., can have two 
   outputs, one for b-jets, other for c-jets

Bottom-line
Check the correlations between selection variables. If important ones have 
non-linear correlations, can potentially benefit from one of the advanced techniques

v1

v2 v2

v1

vs.

Tool will then be taking advantage of the correlations, does the MC used for 
training get it right?  Is the tool picking up some artifact in the MC?

May take longer to assign an efficiency and syst. uncertainty
  (e.g., data/MC comparisons, changing the training distributions)



Multivariate Techniques

Choose a "working point" by sliding along
                      the curve with a given single discriminator cut

How to choose? Depends
   on analysis! (also for square cuts)

Maximize Figure of Merit (FOM):

0

1

e 10

NN > 0.99
NN > 0.95

NN > 0.80

NN > 0.70

better
        classification

signal

e b
ac

kg
.

R
ej

ec
tio

n 
= 

1 
– random guessing

High purity for precision

Only if know background
             very well

Givin index (dec. tree)

Searching for signal

"Punzi": searching for 
  signal, exclude or 
  discover at sigma

Have signal, measure 
                         property

= purity



Background e.g., in Data: "Matrix Method"

Another useful (general!) data-driven way to find a background, e.g., isolated 
lepton fake rate (both from mismeasurements as well as real non-isolated leptons)

Saw previous example in top analysis of calibrating normalization of background
    of W+jets in background enhanced region, extrapolating to signal region.

After selection cut(s):   

want

Start with loose sample:

Apply selection cut(s):

Find by applying selection cut(s) to a separate background-enhanced
  sample, e.g., inverting a cut:  "loose but not tight"  (e.g., non-isolated)

"instrumental"

 71

Find from MC (with appropriate corrections)

Solve the equations for the unknowns



Backgrounds

Use data in background-enhanced region to constrain normalization
  of backgrounds, extrapolate into signal region

Single top

Despite this, will still have an additional theory error from shape
  prediction, e.g., for top, single top, particularly W +  n-jets as a 
  dominant background  (ALPGEN, Sherpa generators)
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Backgrounds

Critical for searches: calibrated and stable missing E

Beat on instrumental noise, much
of which shows up in missing E

T

T
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Cosmics & Hall background
Can overlap with min. bias
  events
    Timing & pattern in calorimeters;
       track activity

Remove



Backgrounds

Toss "bad jets", e.g., pattern of energy deposit not consistent:

Monitor Zero-bias (random) triggers Minimum-bias triggers

Missing Et (GeV)
0 100 200 300 400 500 600 700 800 900 1000

Fr
ac

tio
n 

of
 E

ve
nt

s

-410

-310

-210

-110

Missing Et (GeV)
0 100 200 300 400 500 600 700 800 900 1000

Fr
ac

tio
n 

of
 E

ve
nt

s

-410

-310

-210

-110
Dead Regions

Region 1 (2EM+1HAD)
Region 2 (1EM+1HAD)
Region 3 (Good)

ATLAS

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 10

0 02

0 04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 10

0 02

0 04

0.06

0.08

0.1

0.12

0.14

EM Fraction
0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0 02

0 04

0.06

0.08

0.1

0.12

0.14

EM Fraction
0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0 02

0 04

0.06

0.08

0.1

0.12

0.14
Dead Regions

Region 1 (2EM+1HAD)
Region 2 (1EM+1HAD)
Region 3 (Good) ATLAS

EM Fraction Window

Good
Good

Junk

Junk

 [GeV]miss
TE

0 1 2 3 4 5 6 7 8 9

En
tri

es
 / 

0.
1 

G
eV

1

10

210

310

410

510  Data 2009 (random triggers)

ATLAS
 = 0.9 TeVs

 [GeV]miss
TE

0 5 10 15 20 25 30 35 40

En
tri

es
 / 

1 
G

eV

1

10

210

310

410

(d)

0 5 10 15 20 25 30 35 40

1

10

210

310

410

Data 2009
Monte Carlo

ATLAS 

 = 2.36 TeVs

Wider due to
resolution on real
energies out to 
SE  ~ 100 GeV



Backgrounds

In data: pointing direction of missing E 

QCD jet fluctuating
and faking 

E 
E 

T

T

E T

Df



Limit

Compare observed number of events to number from expected
background
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N.B.: as long as not an anomalous/
  pathological situation, e.g., 
   observed no. events significantly
   less than expected/predicted SM bkg. 

Bayesian, frequentist, hybrid CL  ,
  how to fold in uncertainties, etc.
   should all give similar results!

Problem?  Ruling out the SM
   with your analysis?

s

Statistics tools
Significant excess

Consistent
Set limit

Nobel? (bias?)



Limit

Easy to remember, toy example, if backgrounds negligible:

0 3.0 As a function of mass (usually), find 
and to find observed1 4.7

2 6.3

obsN 95% CLN
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Performance of search based on expected limit, observed limit will fluctuate
   (set observed bkg. to expected w/ uncertainty, or toy MC's)

Favorite theory?

Model-independent searches,
  e.g., Quaero, Sleuth,Sherlock; or
   publish N(obs), effic., backg., etc.
   curves

mass, 
    kinematics

, Br

Excluded



Limit

...and as usual, have to worry about PDF's for theory prediction

arXiv:1008.3162v1
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Limit

...and first limits already coming out of LHC...

Dijets, submitted to PRL

...now better limit than Tevatron
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Systematic Uncertainties

Far from an exact science!
Distinguish systematic uncertainties from known and 
  from unsuspected sources
Known sources:

Errors on factors in the analysis: calibration, efficiencies, corrections, 
   migrations, binning, …
Theoretical uncertainties on branching ratios, masses, fragmentation, etc.

Evaluate systematic uncertainties from known source s  on
  correction factor F:

Either take several (better many) typical assumptions for s   and
repeat calculation of F, then calculate standard deviation of F,
potentially use a toy-MC
Be honest: not over conservative or over aggressive.
It is supposed to be ±1s, i.e,. 68% CL, whereas we often think of
it as "worst case" to cover ourselves. Everyone will combine it in quadrature...
Say what you did and how it was estimated.

Vary expt.variables (E-resolution, tracking errors, …) and consider
change in measurement variable (such as cross section)

i



Systematic Uncertainties

Uncertainties from unsuspected sources need first to be identified,
   cross checks:

Repeating the analysis in different form helps to find systematic effects
Vary the range of data used for extraction of the result, use
subset of data, split the data independently in both educated and 
blind ways – check for impossibilities (phase of the moon?)

Change cuts, change histogram binning, change borders …

Loosen cuts, more background, should get consistent result (but
  usually with larger uncertainty)

Change parameterizations, change fit techniques



Systematic Uncertainties

Define a pass/fail criteria before the consistency 
checks. Remember with 20 checks you expect 
on average one 2s deviation

if you do not expect a systematic effect a priori 
and if the deviation is not significant 
(judgment call), then do not add this to the 
systematic uncertainty

If there is a deviation, try to understand it,
correct for it, or fix the mistake 

-0.01 0 0.01
Ab

sl(test) - Ab
sl(Ref)

Test A
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Test I
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Test P



Systematic Uncertainties

Each line may mean re-running the full analysis many times; you
  will be re-running your full analysis chain way more than you think
Automate that chain as soon as possible!!

e.g., top quark mass
P os s ible V ariation with E T or 

(change by ±1s

s

)

How different from light quarks ?

P Y T HIA vs . HERWIG

V ary parameters  in generator

C hange by ±1� in es timated efficiency

C hange backgrounds  by es timated 
undertainties and vary model of W+jets

Divide s ample

Shift lepton pT by ±1% 

R oom for MC  not to model properly



In Closing

Only a tiny survey with some examples; 
huge amount of experimental 

techniques there "on the streets" 
– just get out there and do it

  

Always keep in mind
that you are physicists;

these huge $B machines were
built to get at the physics
that you are now directly
responsible for extracting

as part of your day-to-day lives

LH
C

Seize the opportunity,
do a great job,
and have fun!

http://xkcd.com/242/




